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A New TLM Node for Bérenger’s
Perfectly Matched Layer

Nestor Pefla and Michel M. Ney, Senior Member, IEEE

Abstract—A new two-dimensional (2-D) transmission-line ma-
trix (TLM) node for the modeling of perfectly matched layer
(PML) media is presented. A rigorous field formulation of the
2-D TLM node allows one to construct a node that has a
scattering matrix fully compatible with the standard 2-D hybrid
node. This approach avoids the coupling of the TLM algorithm
with a finite difference time-domain (FDTD) approximation of
PML field differential equations. The simulation of a wideband
matched load for a WR-28 rectangular waveguide is presented
for validation. A return loss better than 60 dB is obtained over
the 2540 GHz-frequency band.

1. INTRODUCTION

HE PML (perfectly matched layer) principle is based

on the insertion of an absorbing layer surrounding the
computational domain [1]. The PML medium is perfectly
matched so that electromagnetic waves can penetrate into it
at any frequency and angle of incidence, without reflection.
The implementation of the PML in a numerical field modeling
can be achieved by a finite-difference approximation of the
PML field equations, which are then coupled with the finite-
difference time-domain (FDTD) standard Yee’s cell [1], [2].
For the two-dimensional (2-D) transmission-line matrix (TLM)
case, an approach using the equivalence between TLM and
FDTD [3], [4] to interface the TLM network and the FDTD
mesh in the PML layer was presentented [5]. In this letter,
the PML is considered as an active medium in which source
densities depend on field components. Then, using a rigorous
field formulation [6], field equations are written in terms of
incident and reflected local waves to keep with the standard
TLM algorithm.

II. THEORY

Without loss of generality, one considers the 2-D transverse
magnetic (TM) case for which only the field components
E.,H,, and H, are present. In a PML medium [1], E, is
decomposed into two terms, F; and E,,, which transform
Maxwell’s curl’s equations as follows:

oH, (B + E.y)
H, = Y 1
pa—p 0y 3y (1a)
oH, OBy + Eay)
pa—p t oy = 5 (1b)
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where &4, tig, 0, and ¢* are the permittivity, permeability,
electric, and magnetic conductivities, respectively, of the PML
layer. Setting £, = E,, + E.y, (lc) for instance, can be
rewritten as

6d%z— +0.E, 4+ (0y — 04 )E,y = Q;ITy - %
Hence, (1a), (1b), and (1¢’) can be interpreted as describing
an anisotropic medium with both electric and magnetic losses.
The term (o, — 0,)F,, can be related to an electric current
source density controlled by field time and spatial derivatives
in (1d). Consequently, the PML medium can be treated by the
general hybrid node formulation presented in [6].

First, consider the interface perpendicular to the z-axis that
separates the computational domain from the PML medium
(Fig. 1), both having the same basic constitutive parameters
(g4, pba)- Since the attenuation along the x direction is most
important, one can choose (g4, ). Finally, in the PML layer
o, and o) should satisfy

(1¢")

LIPS @)
&d Hd
With the above condition the PML medium is perfectly
matched for normal incidence. For arbitrary incidence, the
source term (—o,E.,) contributes to a correction so that no
refraction and reflection occur for all frequencies.

The general field formulation of a 2-D TLM hybrid node [6]
allows the modeling of electric, magnetic losses, and current
densities. The source term is approximated as follows (see
Fig. 2):

/ (—04FE.y) dz - dy = -ax%%m -E®3)

5
where Eg;) is the value of the subcomponent E., at the cell
center and sampled at time kA, A,, and A, are the mesh
size in direction x and y, respectively, and Al takes arbitrary
value and is involved in the hybrid node algorithm [6]. The
term Eg’;) can be evaluated by an approximated expression of
(1d) in which o, = 0

e (1-T) _N(Efy +E§y)
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Fig. 1. Interface between the computational domain and the PML medium.
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Fig. 2. Generic cell for the 2-D TLM (TM mode) for interface PML-TLM
normal to the z axis.

where T'is a delay operator defined by T-u(*+1/2) = ¢(k=1/2),
Note that electric field time-derivative is applied to a spatial
average value, whereas magnetic field spatial-derivative is ap-
plied to a time average value. Effects due to active sources can
be inserted in a compact matrix notation by introducing two
supplementary arms whose voltage components are deﬁned
according to their usual expression in TLM

(Lg‘,b(; 2-2-(Al Efy :i:ZZyAz Hf) (58.)
a7,br = 3(Al- E5¥ F Z,yA, - HY) (5b)

where Z,, = At- Al/(eqA, - Ay). By performing on (1d)
a time integration from (k — 1/2)At to kAt and a spatial
integration ‘along the y direction from the edge to center of
the cell (see Fig. 2), and then using (4) and (5), the effect of
the controlled source (—o,E.,) can be expressed in terms of
voltages in arm 6 and 7. As a result, the new TLM node of a
PML medium is described by a 7 x 7 scattering matrix. The
above procedure is general and applies straightforwardly for
interfaces normal to the y direction. In the situation where
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Fig. 3. Reflection coefficient versus frequency with different electrical con-
ductivity profiles in the PML medium: Uniform (U), Geometric (G), and
Parabolic (P).

€4 = €0,4d = Mo, Square mesh (A, = A, = A) and
At = A/(coV/2) are used, the PML-TLM node is described
by the following scattering matrix:

b, 1 /2 [ b 2 20 2a d d
by 2¢ —2a 20 -—c d d
b3 2a 2¢ —-b 2a d d
b4 =l 2¢ —¢ 22 —2a d d
.
by -1/2 0 1/2 0 1
l1/2 0o 12 0 = 0 1|

Fay (k=1/2)

az

as

@4 (6)
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where a = 1/(Ge + 4),b = (Ge + 2)/(Ge + 4),¢ = (Ge —
2)/(Ge + 4),d = G./(G. +4) and G = V2Zyo,A. The
top left 4 X 4 submatrix pertains to the one of a medium
with anisotropic conductivities, (eg,uo) and square mesh
for the TLM. Any other situation would add the fifth arm
due to hybrid node stub-loading [6]. Finally, the formulation
presented here is not restricted to the TM case as duality
applies to the TE case.

II1. RESULTS

The new PML~TLM node described by (12) was used for
simulating a wideband matched load of a WR-28 rectangular
waveguide (¢ = 31A = 7.112 mm), 250A long, terminated at
each end by a PML medium of 25A thickness, and backed by
perfectly conducting walls. The structure was excited with a
sheet of electric current located at the middle of the structure
with sinusoidal spatial distribution across the section and
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Gaussian pulse time variation. As a result, only the TE;, mode
was propagating. The electric field was recorded at one point
adjacent to the PML.-guide interface. The reflection coefficient
(a long waveguide case was used as reference) is presented
in Fig. 3 with different electric conductivity profiles of the
PML. They are defined as (U,o, = 4.0 S/m), geometric
(G, 03 max = 10 S/m) and parabolic (P, 0y max = 10 S/m)
[2]. It can be observed that a reflection coefficient as low
as —60 dB is achieved over the entire frequency range of
operation. This performance is at least as good as the one
reported in [5], which shows variations between —50 to
—60 dB over the same frequency range. In fact, comparable
performance was expected as 2-D TLM and FDTD have been
proved rigorously equivalent [6], [3]. This equivalence for
PML, however, has yet to be demonstrated. The advantage
of the algorithm presented here is its continuity (non split
formulation) as compared to the split formulation used in [5].

1IV. CONCLUSION

A new PML-TLM node was presented in the 2-D case (TM
mode). Based on a field formulation, which is an extension of
the general hybrid node, the new algorithm can be described by
a scattering matrix that naturally interfaces with the basic 2-D
TLM mesh. In the case where both the computational domain

and the PML medium have basic constitutive parameters
and &g, six local incident and reflected voltages are involved.
Numerical validations in the case of the modeling of wideband
matched load for a WR-28 rectangular waveguide show that
excellent performance can be achieved in terms of parasitic
reflections at the PML interface.
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