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A New TLM Node for B6renger’s

Perfectly Matched Layer
Nestor Peiia and Michel M. Ney, Senior Member, IEEE

Abstract-A new two-dimensional (2-D) transmission-line ma-
trix (TLM) node for the modeling of perfectly matched layer
(PML) media is presented. A rigorous field formulation of the
2-D TLM node allows one to construct a node that has a
scattering matrix fully compatible with the standard 2-D hybrid
node. Thk approach avoids the coupling of the TLM algorithm

with a finite difference time-domain (FDTD) approximation of
PML field differential equations. The simulation of a wideband

matched load for a WR-28 rectangular waveguide is presented
for validation. A return loss better than 60 dB is obtained over

the 2540 GHz-frequency band.

I. INTRODUCTION

T HE PML (perfectly matched layer) principle is based

on the insertion of an absorbing layer surrounding the

computational domain [1]. The PML medium is perfectly

matched so that electromagnetic waves can penetrate into it

at any frequency and angle of incidence, without reflection.

The implementation of the PML in a numerical field modeling

can be achieved by a finite-difference approximation of the

PML field equations, which are then coupled with the finite-

difference time-domain (FDTD) standard Yee’s cell [1], [2].

For the two-dimensional (2-D) transmission-line matrix (TLM)

case, an approach using the equivalence between TLM and

FDTD [3], [4] to interface the TLM network and the FDTD

mesh in the PML layer was presentented [5]. In this letter,

the PML is considered as an active medium in which source

densities depend on field components. Then, using a rigorous

field formulation [6], field equations are written in terms of

incident and reflected local waves to keep with the standard

TLM algorithm.

II. THEORY

Without loss of generality, one considers the 2-D transverse

magnetic (TM) case for which only the field components

Ez, Hz, and HY are present. In a PML medium [1], Ez is

decomposed into two terms, Ezz and E,Y, which transform

Maxwell’s curl’s equations as follows:
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where Ed, pd, cr, and v“ are the permittivity, permeability,

electric, and magnetic conductivities, respectively, of the PML

layer. Setting E, = EZZ + E.g, ( lc) for instance, can be
rewritten as

Hence, (la), (lb), and (lc’) can be interpreted as describing

an anisotropic medium with both electric and magnetic losses.
The term (aY – ~J ) EZV CaU be related to an electric ctttTent

source density controlled by field time and spatial derivatives

in (1 d). Consequently, the PML medium can be treated by the

general hybrid node formulation presented in [6].

First, consider the interface perpendicular to the x-axis that

separates the computational domain from the PML medium

(Fig. 1), both having the same basic constitutive parameters

(Ed, ~d). Since the attenuation along the x direction is most

important, one can choose (&d, ~d). Finally, in the l?ML layer

cr. and ~~ should satisfy

C7z L7;—— (2)
Ed ~d

With the above condition the PML medium is perfectly

matched for normal incidence. For arbitrary incidence, the

source term ( –o. EZV) contributes to a correction so that no

refraction and reflection occur for all frequencies.

The general field formulation of a 2-D TLM hybrid node [6]

allows the modeling of electric, magnetic losses, and current

densities. The source term is approximated as follows (see

Fig. 2):

where l?~$) is the value of the subcomponent E=V at the cell

center and sampled at time kAt,A., and Av are the mesh

size in direction z and y, respectively, and Al takes arbitrary

value and is involved in the hybrid node algorithm [6]. The

term E$) can be evaluated by an approximated expression of
(id) in which Oy = O

‘—” (E’’:E;’)
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Fig. 1. Interface between the computational domain and the PML medium.

4>
,’ H;

/’

z

[, ~

t

~ ;/ :
Hi

. . . . . . . . . . . . ..- . . . . . . . . . . . . . . . .
“0/’

‘fd~
/’

,’ ‘Y

+ Ax?
&o

x

Fig. 2. Generic cell for the 2-D TLM (TM mode) for iriterface PMLTLM

normal to the z axis.

where T k a delay operator defined by T.utk+l/2) = U(k– 1/2).
Note that electric field time-derivative is applied to a spatial

average value, whereas magnetic field spatial-derivative is ap-

plied to a time average value. Effects due to active sources can

be inserted in a compact matrix notation by introducing two

supplementary arms whose voltage components are defined

according to their usual expression in TLM

a6; b6 = ;(A1 . E:y + ZZYA. . H:) (5a)

(L7,b7 = ~(Al . E:y + Zzy Az “ H:) (5b)

where Zzy = At . Al/(edAZ . Av). By performing on (id)

a time integration from (k – 1/2) At to kAt and a spatial

integration along the y direction from the edge to center of

the cell (see Fig. 2), and then using (4) and (5), the effect of

the controlled source (– mxEzg) can be expressed in terms of

voltages in arm 6 and 7. As a result, the new TLM node of a

PML medium is described by a 7 x 7 scattering matrix. The

above procedure is general and applies straightforwardly for

interfaces normal to the g direction. In the situation where
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Fig. 3. Reflection coefficient versus frequency with different electrical con-
ductivity profiles in the PML medium: Uniform (U), Geometric (G), and

Parabolic (P).

&d = &o, ,Ud = LO, square mesh (A. = Ag = A) and

At = A/(co W) are used. the PML–TLM node is described

by the following scattering matrix:

bl - (k+l/2)

b2
b3
bb ——
. . .

b6
by .
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where a = l/(G, + 4), b = (G. + 2)/(G~ + 4), c = (a. –

2)/(Ge + 4), d = Ge/(Ge + 4) and G. = fiZooZA. The

top left 4 x 4 submatrix pertains to the one of a medium

with anisotropic conductivities, (. SO,LLO) and square mesh

for the TLM. Any other situation would add the fifth arm

due to hybrid node stub-loading [6]. Finally, the formulation

presented here is not restricted to the TM case as duality

applies to the TE case.

111. RESULTS

The new PML–TLM node described by (12) was used for

simulating a wideband matched load of a WR-28 rectangular

waveguide (a = 31A = 7.112 mm), 250A long, terminated at

each end by a PML medium of 25A thickness, and backed by

perfectly conducting walls. The structure was excited with a

sheet of electric current located at the middle of the structure

with sinusoidal spatial distribution across the section and
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Gaussian pulse time variation. As a result, only the TEIO mode

was propagating. The electric field was recorded at one point

adjacent to the PML-guide interface. The reflection coefficient

(a long waveguide case was used as reference) is presented

in Fig. 3 with different electric conductivity profiles of the

PML. They are defined as (U, o. = 4.0 S/m), geometric

(G, OZ~,. = 10 S/m) and parabolic (P, o. ~aX = 10 S/m)

[2]. It can be observed that a reflection coefficient as low

as –60 dB is achieved over the entire frequency range of

operation. This performance is at least as good as the one

reported in [5], which shows variations between –50 to

–60 dB over the same frequency range. In fact, comparable

performance was expected as 2-D TLM and FDTD have been

proved rigorously equivalent [6], [3]. This equivalence for

PML, however, has yet to be demonstrated. The advantage

of the algorithm presented here is its continuity (non split

formulation) as compared to the split formulation used in [5].

IV. CONCLUSION

A new PML–TLM node was presented in the 2-D case (TM

mode). Based on a field formulation, which is an extension of

the general hybrid node, the new algorithm can be described by

a scattering matrix that naturally interfaces with the basic 2-D

TLM mesh. In the case where both the computational domain

and the PML medium have basic constitutive parameters PO

and Co, six local incident and reflected voltages are involved.

Numerical validations in the case of the modeling of wideband

matched load for a WR-28 rectangular waveguide show that

excellent performance can be achieved in terms of parasitic

reflections at the PML interface.
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